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Superconductors in a Magnetic Field - Vortex Lattice

The structure of a vortex lattice.

1 Order parameter solution

Last time we found the �rst nucleation �eld for superconductivity in a strong
magnetic �eld for T < Tc as
Hc2 =

√
2κHc.

We took solutions to the linearized GL equation of the form,
f(x, y) = g(x)eiky.
Hc2 is the �rst non-trivial solution to the 1D di�erential equation:
−~2

2m∗ g
′′ + 1

2ks(x− x0)2g = ~2

2m∗
g
ξ2GL

= εg = −αg,

where the "spring constant" is ks ≡ (e∗µ0H)2

m∗ , and x0 ≡ Φ0k
2πµ0H

.

The eigenfunction for g(x) is the ground state of the harmonic oscillator,
with full solutions of the form,
f(x, y; k) = eikye−(x−xk)2/2ξ2GL , with xk ≡ Φ0k

2πµ0H
.

This represents an in�nite number of degenerate solutions, labeled by the pa-
rameter k.

We expect a set of solutions that are periodic in space. This can be accom-
plished by making k an integer multiple of a basic wavenumber q as k = nq,
with n = 0,±1,±2, .... Now the centers of the Gaussians are also periodic in
space with xn = Φ0nq

2πµ0H
.

The y-solution is periodic with period ∆y = 2π/q and the x-solution has period
∆x = Φ0q

2πµ0H
. The area of a unit cell is therefore ∆x∆y = Φ0

µ0H
, showing that

exactly one �ux quantum is con�ned in each unit cell. This is the ultimate limit
imposed by quantum mechanics when the energy per unit area of an S/N inter-
face is negative. The vortex lattice is the result of the proliferation of negative
energy interfaces, arrested only by �uxoid quantization.
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2 Vortex lattice solutions

The general solution for ψ(x, y) comes from a linear superposition of all of the
above solutions:
ψ(x, y) =

∑
n Cne

inqye−(x−xn)2/2ξ2GL . If Cn is periodic in n then ψ is also peri-
odic in space.
The two common solutions are the square lattice (obtained when Cn = C0 for all
n), and the triangular lattice (obtained when C1 = iC0 and Cn+2 = Cn for all
n). The true minimum energy solution is found from GL theory by minimizing
the free-energy di�erence,

〈fs − fn〉 = −α
2

2β
1
βA

, with

βA ≡
〈|ψ|4〉
〈|ψ|2〉2 . Hence we seek the minimum value of βA. A uniform solution

has βA = 1. One �nds that the square lattice has βA = 1.18 while the trian-
gular lattice has βA = 1.16, just slightly lower. The class web site shows these
solutions for ψ(x, y) as well as many experimental techniques to image the vor-
tex lattice. Some techniques (STM) measure the local density of states at the
Fermi energy, which is enhanced in the vortex core due to the suppressed order
parameter. Bitter decoration images the magnetic �eld concentration near the
vortex cores. Lorentz microscopy magneto-optic imaging, SQUID and magnetic
force microscopy methods all image the magnetic �eld pro�les.

Note that we have assumed the superconductor does no screening, hence to
this �rst approximation the magnetic �eld is homogeneous in the superconduc-
tor.

3 Estimation of Hc1

How do vortices �rst enter a type-II superconductor? As the applied �eld is in-
creased from 0, the superconductor will maintain the Meissner state by creating
screening currents to keep the �ux out. It costs energy to create such screen-
ing currents. On the other hand, allowing the �eld to penetrate will force the
superconductor to give up some condensation energy in the core of the vortex
where the order parameter is suppressed (as seen in the ψ(x, y) pro�les discussed
above). The �rst vortex will enter when these two energies are comparable. In
other words when
µ0H

2
c1

2 πλ2
effL ≈

µ0H
2
c

2 πξ2
GLL, where L is the length of the vortex in the super-

conductor. The left hand side is an estimate of the energy required to exclude
a magnetic �eld of magntidue Hc1 in a "`tube"' of radius λeff , while the right
hand side is the condensation energy lost when the vortex core goes normal.
The equality yields,
Hc ≈ κHc1 with κ = λeff/ξGL. Hence Hc1 < Hc in type-II superconductors.
Using our earlier result for the upper critical �eld, Hc2 =

√
2κHc, one can �nd

Hc =
√
Hc1Hc2/

√
2, the geometric mean.
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4 Structure of an Isolated Vortex

We will attempt to solve the full nonlinear GL equation which is coupled to the
current equation, self consistently. We make a number of assumptions based on
the vortex lattice solution:
1. The magnetic �eld is in the z direction,

−→
H = Hẑ. We shall ignore any

variation of the solution in the z direction (i.e. ∂/∂z, etc. will be ignored).
2. The magnetic �eld is supported by currents that �ow in the x − y plane.

Hence both
−→
J and

−→
A will be con�ned to that plane.

3. The solution will have full cylindrical symmetry. The order parameter will
be of the form ψ(−→r ) = ψ∞f(r)eiθ. The explicit θ dependence is intentional. It
gives rise to a phase pickup of 2π upon moving the wavefunction in a closed loop
around the vortex core in a plane perpendicular to the magnetic �eld direction.
4. With this cylindrical symmetry, the vector potential is constrained to have

only a radial dependence and a θ̂ direction:
−→
A (−→r ) = A(r)θ̂.

With these observations, the coupled GL and current equations become:

f − f3 − ξ2
GL

[(
1
r −

2π
Φ0
A(r)

)2

f − 1
r
d
dr

(
r dfdr

)]
= 0, where f = ψ/ψ∞ and the

current density expression is
−→
J = e∗

m∗ψ
2
∞f

2(r)
[
~
r θ̂ − e

∗−→A (r)θ̂
]
with

−→
B =

−→O ×
−→
A = ẑ 1

r
∂
∂r (rA(r)).

One can solve for the vector potential in terms of the magnetic �eld by in-
tegrating the last expression,
A(r) = 1

r

∫ r
0
µ0h(r′)r′dr′, where h(r) is the microscopic magnetic �eld.

Now examine the vector potential at small r (near the vortex core) and at
large r, in sequence:
1. As r → 0, on the scale of the GL coherence length, we expect that h(r)
is uniform since it is screened out on the much larger length scale λeff in the
type-II high-κ limit. Hence h(r) ≈ (0) and we have,

A(r → 0) = µ0h(0)
2 r.

2. As r → ∞ the integral for A(r) encompasses all of the �ux in the vortex,
which we know is Φ0, and the result is A(r →∞) = Φ0

2πr .

Now examine the GL equation in each of these limits:
1. As r → 0 we use the solution for A(r) given above to �nd,

f − f3 − ξ2
GL

[(
1
r −

2π
Φ0

µ0h(0)
2 r

)2

f − 1
r
d
dr

(
r dfdr

)]
= 0.

We try a power-law solution good near the origin, f(r) = crn. One �nds that to
leading order n = 1, which is exactly what we saw in the solution for ψ(x, y) in
the vortex lattice solution - ice cream cones. To next order one �nds a correction
to f ∝ r of cubic order in r/ξGL, with a minus sign. The solution can there-
fore be approximated as f(r) ≈ tanh(r/ξGL). This has the linear behavior at
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small r and the asymptotic behavior f = 1 far from the vortex core, as expected.

Going back to the vector potential and magnetic �eld, we can utilize the fact
that screening occurs on longer length scales than the core diameter (κ >> 1),
hence f(r) ≈ 1 for r > ξGL in the current density equation above. With this,
we can re-write the current density equation as,

µ0λ
2
eff

−→
J +A(r)θ̂ = Φ0

2πr θ̂
The left-hand side is what we formerly called the generalized London equation.
Taking the time derivative gives the �rst London equation, while taking the
curl gives the second London equation. In this case we have an inhomogeneous
equation with a source term on the right hand side.

Taking the curl of both sides gives a second London equation with a vorticity
source term:
µ0λ

2
eff
−→O ×

−→
J +

−→O × (A(r)θ̂) =
−→O ×

(
Φ0

2πr θ̂
)

The right hand side evaluates to a delta function at the origin:
−→O ×

(
Φ0

2πr θ̂
)

=

Φ0δ2(r)ẑ, which we call the vorticity
−→
V (−→r ). We can write the resulting equa-

tion as,

µ0λ
2
eff
−→O ×

−→
J + µ0

−→
h (r) =

−→
V (−→r ).

To proceed with this 'mixed' equation, use the Maxwell equation
−→O ×

−→
h =

−→
J

to get,

O2−→h − 1
λ2
eff

−→
h = − Φ0

µ0λ2
eff

δ2(r)ẑ. This equation has an exact solution!
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